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TH730RY OF TWO-DIilEI?SIONAL POTM$fTIAL FLOW

ABOUT ARB3.!NWRY WING SNCTIONS*

By H. Ge%elein

SUMMARY

Three general theories treating the potential flow
about an arbitrary wing section are discussed in this re-
port . The first theory treats the method of conformal
transformation as laid down by Theodorsen and Garrick; the
second. is e, generalization of Eirnbaum’s theory for mod- ,
erately thick airfoils; the third is a general investiga-
tion of the complex velocity function with particular ref-
erence to the relations first ~.iscussed by F. ‘?einig.

The relative merits of the different methods in ques-
tion are illustrated on a wor]~ed-out example and will be..
published in a subsequent issue of this periodical.

INTRODUCTION

~lle present investigations relate to the two_di,men-
sional potential flow of a frictio~lless, incompressible
fluid around any simply connected region, particularly
around airfoils. Such a flow, as is known, is completely
described by a reqular, analytical function - the complex
velocity function. Since an analytical function, in turn,
is completely descri’oed by its values along any closed
curved remaining wholly within the region of regularity,
it is sufficient to know this complex velocity function
along a curve enveloping, once, the zone washed by the
stream - for which purpose the limiting curve or profile
contour itself may be chosen, with observation, of course,
of any potential singularities on the limiting curve. In
——_______ _____ __ _______________
*
IITheorio der e“oenen potentialstr~mung Um belie-~i+”e Trag-

fl{gelprofile.11 Ingenieur-Archiv, vol. IX, no. 3,
June ‘1938, pp. 214.-240.
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any case the problem may %e considered solved, once the
velocity along the profile contour is known in magnitude
and direction.

The very next problem is to find the flow - that is,
above all else, the velocity along the contour for any
predetermined region. In this case the contour with its
direction affords the direction of the velocity as well,
leaving simply the quest of the function for the a%solute

I

. .

value of the velocity along the contour. This ,
(reference 1), requires

as is known .
the supplementary assumption of:

1) the velocity at infinity in magnitude and direction~.i dU\I
2) either the circulation, i.e., the line integral of the
velocity along a curve encircling the o“%stacle once, or
else “the point on the contour of ~ne of the stagnation
points of the flow.

This general flow pro%lem can %e reduced in known man-
ner to the mathematical p.ro%lem of conformal transforma-
tion of tke contour of the washed region ~nt~ t~le c@ntour
of a circle - a pr,o%lem whose solution is afferded by
Riemannls lab of transformation. It can be considered
solved if it is possille to construct this conformal func-
tion not merely by visualization but byactual platting,
according to a method which must he rapidly converging, if
infinitely many steps are necessary. Such a method was
advanced and -proved by T. Theodorsen and I. E. Garrick
(reference 2) and in the treated cases, yields verY quick
results. It can also be proved that this method converges
under certain sufficing assumptions and solves the trans-
formation problem rigorously. The results, built up on
it, a’re the mathematically exact solutions of the general
flew problem.,

,.
But in aerodynamics, the opposite of the above Problem

is also of significance - i.e., to find .a profile along
which the flow about the conteur is accompanied %y a de-
sired velocity distribution. F. Weinig has established
the surprising. fact that this problem is mathematically
simpler and that, if the desired~ velocity distri?mtion in
the potential flow about a sim:~ly connec-te d region can
take place at all, the contourof this region can be ex- ~
actly determined without a$n infinite method. ““Admittedly,
the a’ssumpticns required for the velocity distribution
along the contour itself cannot be summarily complied with,
hence it is impossible to” take such distributions di~ectly
as a starting point for the calculation 6f profiles. A
suitable assumption, instead of this velocity distribution,
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L“
is a freely availa%l~ real function following ,from it ,ly
‘distortion i.nabscissa .dire.c>ion. The me”thod is parti-cu-
larly suitable for..developing p’rb,fj.lei+tiitihprescri.%ed ..,
characteristics.

,,,,

In. earlier airfoil theoriesj .spec:ial canformal func- ‘
~ions’ with a varying num”Der of parameters w~:ic:hgive the
conformal transformations bet]veen ,Circles ~nd airfo~l-
shaped regiens, formed the center of investigation, and
logically the results were predictions alout special, multi-
parameter airfoil “families. General relations between the
functions for the profile contour and for the velocity dis-
tribution could not be o%tained in this manner, with the
notable exception of infinitely thik airfoils by the so-
called ‘Birn”oaum theo”ry~l’which, proceeding from the image
of a nonuniformly covered flat vortex layer, approximately
esta’Dlished a relation between the difference in velocity
on the upper and lower profile surface and the slope of
the mean line of the profile. Notwithstanding its re-
stricted range of validity, this theory presented many e..d-
va.ntages and made its generalization to include thick o,ir-
foils very desirable which, however, did not succeed sat-
isfe.ct’orily with the vortex layer concept.

In the present report it is attempted to comline the
past information mn potential flotv around airfoils, so
far as they arc of this functional type, with a view to
nbtaining data which tie the profile contour and the com-
plex velocity, or velocity distribution along the contour
in plainest and most amenable form for calculation.

In this connection, the findings by Theodorsen and
Weinig are significant. It might le surmised that by van-
ishing profile thickness these the~ries lead back to the
old theory for thin airfoils. ~But suc’h is not the case.
It rather affords a new approximate theory - p’roba31y ’suf-
ficient for all cases encountered in practice which, with-
out restricting itself to infinitely thin profiles, con-
tains the equation part of the theory of lifting vortex as
limiting case and to that extent represents its general-
ization. It ultimately affords a survey over a system
of integral equations, every one of which is involved as
mathematical starting point for a,general airfoil theory.
It is shown how the theory of l~ift’ingvortex surface” and
~einig!s results aline:”themselves ”in this general arrange-
ment”. ,.

r-
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1. :TW!!POTENTIAL

ITS RELATION

Technical l$emokandu~ No..:886

.??L’OW:AROUND A CIR.OULAZZ:CYLINDER AND
,.,.,. ,-,.”’> ‘, .,.~,:..-.... .,,,.
TO’ T“LOW ~ROUi?D Gl13&.AL PROFILES

. ..’”

‘The physical c“mmditions of two-.’di,mensional vortex-
free flow in frictio”hless, incompre ssiblk,fluid are con-
tained in the two equations

~-’~*,Q ~LJ;<.j&J u:; :Q .“Ui.$’$~,..

(1)

where u and v indicate the velocity””in :X’ and y
direction. They represent the Cauchy-Riem”ann differential
equatiofls for the analytical function’ ~,, ., .....

(2)

the s~-called ‘fcomple,x’v,elo.cityfti’nc.tiqn-”f‘which completely
descri%es a two-dimep~s,ional potential flow’.

If it relates to the flow around a finite region, as,
for instance, a “circle “or airfoil in unlimited fluid, sev-
eral general predictions as to function W*(Z) can be
made . Since infinitely great velocities can oc~ur only on
the border of the fluid region, the function w (z) is,
above all, regular everywhere outside the region. Hence
for !&&/t ‘z, .?*(Z) can be represented by the series “

clW*(Z) = co +--–+!:+ .*.
z z

(2a)

The ‘constant Co indicates the complex velocity at infin-

ity., The ‘cti’nstant Cl is purely imaginary, if the con-
..

tour around tQe .ol,stacle is a streamline, as presumed
here , in .acc,or.dwith. classical theory. C;. iS associated
with the circu”latio.n r of fhe body through the relation

Cl = i ~~. While “Cl is decisive for the fo”rce exerted.

by the flow on the” body, C2 is decisive for the,“moment

on the body.’ If Cn =’~n + i Bn and p is the density

of the flowing medium, Graqmel% well-known equations (ref-
erence 3) give for the ’’two components’ px’ and Py’ of the
force and for the moment M turning clockwise about Z=ot
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P= .=-2Tr p BOBI,
?Y = 2TT p AOBIY’ M = - 2U p“(koB2+BoA a)

—— ,. , .... .>.. . -,, .,: ,,, .... . -, (3)
For the most general flow a~out the” unit circle

with the two stagnation points Zz = ei(a-p) and =2 =
.ei(n+ti+~)

? the cemplex velecity. function is:
.,, ,,

[

““W*(Z) =~e-icl ,1- ei(a-~)

1[ ,

“i(a+@)
—————..

z
1 + Q–-_—_

tz” 1 (4)

The flow ha’s the a-osolute velocity W at infinity where
it forms the angle a with the x axis. Transformed,
equation (4) gives:

.

( )W*(z) =W e-is + 22–-222--2- ‘La—----
Z Z2

The series (2a) stops in this case with the term Z–2.

The coefficient of z-l is, as should ~e, purely imaginary.

On the circle circumference z = ei~ it is

w*(V) = 2i W e“ ‘~ (sin (cp-a) + sin !3)

hence the absolute velocity on the circle periphery is:

Iwl = lTv*(cp)l = 2W I sin (T-a) + sin Ill{ (5 )

The velocity is zero at the two stagnation points for
q=a -~andv’=m+a+~. For “the direction of flow

at ~oint z =“eiw; we find U/V = - cot q, which confirms

the fact that the function (4) actually represents a pot.en-
%ial f10’ivabout the unit cj-rcle-

The potential flOW about the circular cylinder is, as
known , of fundamental importance for the general theory of
potential flow about any simply connected region ~, be-
cause the conformal function ;(z) which transfers the
contour of the unit circle on the contour ~~ _3, makes ‘i,t
possible to deduce the velocity function w ,(Z1 for a“flow
around region ~ from the complex velocity w (z), acc6rd-
ing to equation (4). The relation is:
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The d,erivat’ion nf equation (.6’.)usually proce’e.ds from the
fact that in the conformal transformation by E(z) the
orthogonal fi..elds of the streamlines and the potential
lines of both flows merge.{,e.P/+-j @4-4c ~ ~~~~;~$ ~.

v
b., .ti~~ -) , f]

But this ,formula can also he und~$;tood without re-
sorting to t’he fleT7 “’potential’.“’For’ ~ (=) is “an analyti-
cal function, for whose functional Values along the 3or-
der of ~ the negative ari~u~ent agrees with the direction
of t’he contour. Function w’(z) m“eets this requirement
for the unit circle. In the conformal transformation of
E(z), point z moves to~{ard ~ and the vicinity of z is
turned through an angle _*a~c dE/dz. Hence, to insure the
required direction, nf w (z) at the border of ~, it is
necessary that:

arc F“’*(E) = - arc w*(z) + arc QZ
dz

But the analytical funct!icn which complies with this re-

quirement is W*(Z) q.
‘dz

This .pro,cess’affords the potential f~ow a“oout an infi-
nitely thin, flat plate. The analytical function which
transfers the outside of the unit circle in’ the z plane
into the E plane rectilinear from -1 to +1 reads:

or (7)

which , written for z in equat~on (4). and multiplied by
dzjd~, according toequati~n (6), gives for the complex
velocity of the most elementary flaw alOUt the flat plate
extending frem” -1 to +1’ the follotving (with a.l’~revia-

tion ‘T= 2W):
!“,”

., ,..

This equation descri”~es a three-parameter_system of
-potential. flc=ivs. TWO; that is, the velocity W at infin-
ity aild angle of flow a can be regulated tat will,. ‘The
value of the third,:parameter p is physically cfinditioned -
i.e., the Joukowski, condition of finite velo:jty at the
trailing edge Z = 1. In the present case ~ (2) is finite

if lim (; sin CL- sin. p).= O, that is, if P = CL. Thus,
z —> 1
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the velocity function for the fl,ow around the “flat plate
..f.inally. re,ad.s:..._ ,+. ..... .’.,, :. . ‘ _...... ... .. ..:

.,-

=*(E)
( :

=.T Cos a,- isinm/- (g)

..4

In order to describe the velocity distri%utfen on the
surface of the. plate, the variable P is emp~oyed. Ac-
cording to equation (7) v = cos q = % for z = ei~. Then

it is for the surface of the plate:
.. !

-( : s= (’0s“’sin ‘ ~an:)F (cos cp)=l?”cos a-l-sina

after which the abso’lute velocity at point ~ = cos cp %e-
comes

With this method any fiumber ~f other potential flows
can be mathematically described “oy different. choice of
confo.rmal function. As it is easy to give cenformal trans-
formations which transform the contour of the unit circle
into that of a simply connected airfoil-like region, it is
equally possible to give profiles which may be controlled
by mathematical theory.

The theories of general petential flow. about airfoils
discussed hereinafter, give the relation between the func-
tion for the profile contour and the complex velocity along
the contour, and tie these functions in a fashion amena,ble
to calculation. The start is made with the strict formu-
las for the flow a%o~t any predetermined airfoil to which
the theory of Theodorsen and Ga.rrick leads..

2* RIGOROUS THI!ORY O)? POTENTIAL FL(3W ABOUT ANY PRO~ILE

The previously described classical method of &btain-
ing the potential flow about any simply connected region
yields - in conjunction with the method of Theodorsen and
Garr”ick for obtaining the conformal ftinction’ for “any”ini-
tial region - a rigorous soluti~n of the basic prnb’l”em”of
airfoil theory; that is, to find the potential flow about
any given airfoil (refereaees 2 and 4).

1~ ,— , ., ,,,.,,., .
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If the values of the. complex velocity along the pro-
file contour are known the problem is solved, because
then Cauchyfs integral formula gives the velocity func-
ti~n for any point on the outside region replete with the
flowing medium. To ’find” the velocity distrilm.ztion on the
profile contour, the procedure is as follol~s: The con-
formal transformation (7) which transfers the slotted
plane to the outside znne of the unit circle, transforms
the profile into an almost .circular region. With the aid
of the function which conforma~ly transforms the contour
of th~s region nnto the contour of the unit circle , the
velocity distribution on the c~ur is then comPuted for
the flow around this region. From this distril.mtion -the
velocity distribution along the profile contour is deduced
with the aid of the first conformal transformation.

Assume the arbitrarily given profile in the % plane
te he so plotted that its trailing edge coincides with
point <=1 and point ?=--1 lies in the profile near
the nose of the profile (fig, 1). If the E plane is con-

. ,.
forma]ly transformed by function [ Y ~ ,+~~” on the

~ plane, then for the given -position of the profile with
respect to the fixed points Z=$l, the image curveof

the profile contour in the C“plane is the contour of a
simply connected region which; for the common profile
forms, is in more or less satisfactory agreement with the
unit circle;

.,,

T~ne boundary curve of this reg$.ofnW!W$:,:.!:)+i’
(fig. “2), The function v(Cl)’ is uti~~voca~, S eady, and
periodic with the period 2Tr;’ the boundary curve, viewed
from the origin L = O, is ~tar~shaped. + ““

The prot~em is to’”~ransform the” contfiur of the unit
circle z = el~ on the contour of the region bounded by

c(e). This conformal transformation $,s standardized by
the c~ndition that the infinitely remote ioint of the ‘z
plane and the direction of the positive real axis in it,
are coordinated to infinitely remote point of the ~ plane
and the direction of the positive real axis. ‘According to
Riemann, there is exactly one analytical function c(z)
which meets this requirement and conforms-olY t~aniforms the
two outside regions. But”in view” of this ”fact, ‘the con-,.
formal functicn ~,(z) has the for?.
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where E(z) for 121 >1 inclusive of’ z = m, is a reg?
ular analytical. funct,ian which, assumes a real Value fOr
z—

-,
m.

Owing to z = ei~ and c = e$+ie, it is

on the unit circle. Thus the function F(z) assumes on-

‘v the bo~dary valuesthe circle z = e * + i(e - q).
Given either e(v) or $(p), the function F(z), and
hence the conformal function ~(z) can %e directly writ-
ten.1 Since F(z) takes a real value at infinity, we have
here h(m) = O; hence by steady $(cP) for any z
\zl >1.

with
the equation

.——_________ __ ____ ______
lIf F(z) ~g+ih is an analytical funct~gn that is reg--
ular for Izl >R includin$ z = m and &’&$y” on the cir-
cle Izl = R, all z = v e’~ ~itjh ~ > R follow the Pois-
son integral formulas:

21-r

g(v,cp) = –1–r ‘2 2

21-r.
g(R,P1) –E– –––––~-–z~–—–—–––= dcp’,

v- 2V R COS(Cpl-fQ) + R
o

g(v,cp) = g(m)- &
/

h(R,
.
0

w-hich, combined, read:

PIT

g(m) . +; 1 g(R,cP1) 13.cP’
.
0

2V R sin(91-Qj ______ d~r
v’) ———..-.— —

V2 - 2V R COS(C+31-CJl)+ R2

2TT

/

>
,. F(z”)= i h(m) + ~ z + R eiq~ ~qt

g(R, T1) ——-——......——
2-IT, z- R eiq

o

The second equation yields for R = 1, v~R, the impo&-
tant formula 2n

g(l,f?) = g(c@) -+
.[

h(l,v’) cot ~~:: d~t

The integral ~ere stands for Cauchy!s principal
Harry Schmidt, Aeredynamik des Fluges, p. 87).

*
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(11)

is applicable , while on the unit circle itself, me find:

..
2’rr

,. .,..

./
- q dvtT + ,.Q(.@ = ~;. *(V r) cot ~J–E––

.. ,. ..,: “’. ‘o,...:”., .,,, ,.

Introducing the phase difference ~ - o(q) as new
function ~(@

~(~)=~-e(~)’ ..’ ““ ‘(12)
.,..

gives ’for the presefit ,...
2’rT

:’.

If $(cP) hasa continuous first derivatiw~, Partial inte-
gratioil leads to

Actually ~his is not the functiofi $(9) bu~(;yther
~(e). and the problem is to find the functi@n for

the given ~(9). Then the function q(e) follnws frcm
6((3) ,acc.ording to equation Cp(e) = 6“+ d(e), and T(e)

tngether with v(e) gives the function $(c.P). with ~(cP)
the conformal fupction can he explicitly written, accord-
ing to equation (11). : ,.

\

There remains the relation ‘oetween $(e) and c(6)
yhich , how~vus ti’sasi,ly established when assuming that

d~/ de is -s..taa..dyand other than “zero, because then

L
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and consequently, “
all

o (13)

This is the equatisn upon which Theodorsenfs meth-
qd is )ased. It is a nonlinear and singular integral equa
~iOn and therefore does not aline itself in the known the-
ory. But , according to Theod.orsen, it can le successfully
applied “Dy iteration process. This method is similar to
the Picard-L-indelof method of solving differential equa-.
tions. It consists in temporarily substituting the unknown
6((3) on the right-hand side for any suitable function
(fOr instance, co(o) ~ O). Then equation

2’n

(13a)

o

defines cl.(e) and generally gives Ck+l(e) with the aid
of ~k (0) through the recursinn formula’: “’

,.,
2rr

.[
Clc-t-l(e)= & ~$ In sin2 r c (el)-

,C$’-!? -i-–k–––––F..—–.
1

~k(e) ~g!

. L

-?’?’;~$ ~
convergence it wfiuld have to %e

shown that the functions ck(e) tend. toward a’ limiting
function which satisfies the integral equation (13). This
proof is not adduced in the original work of Theodorsen
and Garrick, but rather in the practicability of the de-
scribed method instead, by showing on several solved exam-
ples that in them the functions Ck(g) are practically no

\-

.
=--11 --, .,.--, , ,,, ,, ,.,,,, -— .- . . . ,,, ,---
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longer distinguishable after a few iterations. The solp-
tion of the integral is effected with a quadratic formula
which considers 20 ‘points in the interval (0)2 Tr).

Incidental to the present work, some searching inves-
tigations’ concerning the. convergence of this method were
carried out. It could be prov d that the functions

FA..&-’-
Ck(e)

converge uniformly tcward a S&-MA& limiting function c(e),
which complies with equation (13), if the initial function
v(~) can be represented by a Fourier series whose coeffi-
cients an and bn are of the order of magnitude of

A—————— where P>2 and A & smaller than an individ-
(n+l)p’ 1

ually specifiable, positive figure . A. different from O.

But the calculat~ons of this proof are too extensive tobe
reproduced here,

It might be noted that the very first step of the
method affords, in general, such a satisfactory approxima-
tion t-lat it suffices for practical purposes. The numeri- ~
cal evaluation of the integral of equation (13a) may be ef-
fected with Theodorsen!s calculation scheme.

Suppose that the function E(e) is known: then, “~e-

equation (11), the conformal function L(z) is:

from which the enlargement ratio of the conformal trans-
formation at infinity follows immediately at

,-

But on ‘the boundary Of the unit circle we have, ‘oecause of

~ = e$+i~ at the point’ of z = ei(6+c) = eiq

.

,’
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(15)

By reason of this the” ’~elocity distribution in the
Cplane is possible. The values of the complex velocity
function w** (~) along the contour follow from w*(z),
according to equation (4), and dC/dz according to

w**(e) ( ?)=‘**( C)g=e*+-je = w“(z) ~zZ=e-jp

But on the circle periphery it is, according te equation
(4)

‘*(Z)z=ei~ = 2i W e-iv [sin(Cp-a,)+ sin @] =

2i w e-i(6+C) [sin(~i-~-a,) -I-sin p]

Hence

1+3E
TV**(6) = ai W e-v-ie ----–JQ [sin(~+C-a) + sin B]

~igw
(16)

d~

For the determination of tile complex velocity %*(E)

in the ~ plane along the profile contour, the transfer from
plane ~ to plane E must be effected. ,Both planes are mu-
tually related through the conformal function ~ = ~ -1-

~<or Z ( 3 ~=;,[+[ Using the ell.’ip’ticcoordin-

ates !J,e the equation of the profile contour in plane”
E reads:

(L+*)[.e*+iO =
E(e)=: ~[ei(6-i$)+e-i(O-i~~’J = cos((j-ii. f)

Along the contour, it is:
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Besides the enlargement ratio o

(f)

—.
infinity is 1

~~mm ~ . ._: ,h

,tion along the’ profile contour:

. . . ..

m6ran.dum
.....

886.

f this
,,.,

transfgrrna tion

: dis

,a+

tri.ence.$he v’e1ocity 1)u-

1-1-
———.

i-i

in ~_——+ )2W (17

Now the -par
trailing edge,
finite. The con

ameter B
that is, f
diti~n for

must
or 6
this

%e
= o
is:

so

*

defin
the v

ed
“elo

that
city

a
r
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he
ins

To make
flat pla
value fo

sin(~!+~+

= sin(

th

,te
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a)

a-

e fins

‘Beq:;

+ sin

@+s

,1 result agree with
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+ sin
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[Cos(
i_
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In a
in the

ording

dditic
plane

to eq

n,

ua

we substitute the absolute flow velocity
z for W. It is with the constant a

ticn (14a)cc

w= 1imz, —m
and hence

giving as final pr nfi le eon t our

(sin 6+C-.———-----
sin(6-

-60)————
iW)

~+
_—.—-

l-i [
Cos (a- ) -1-) a

Fj-1-c-e
————.

2

.

0.—
-i

(18)sin (a- ) tan+
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But , on account of. . .. .. ., ... >.,

Isin(O-i$)l = ~ sin2~+sin~ $---

the a%solute velocity,, takes

]F(G)I = al?

,.. -.,
“-...,

.

and
---[1=,:i ‘j”=j--~

the form ,....“.-.
@J

sin(f3+C-co) l+de____________ ____ ,——---——————---

J;G~-e-Uiz&EFT
KLTEY

[

G+E-co :
CO S(G-6C) + sin(a-Co)tan —————— f (19)

2i

Equations (18) and (19 ) ar,e the strict equations for
the velocity of the potential flow along the profile con-
tour . To obtain an explicit expression for the complex
velocity at any other point “~ of the outside region, the
Cauchy integral formula is applled. Since the complex ve-
locity function F*(E) outside of the profile ind-usive
of infinity is regular throughout, if ‘; denotes any point
of the outside zone and yf a point of the profile conrn
tour , the equation2 reads:

ii*(m) s F ~-i~ at infinity, and ~f = cOs(e-iW),

( ‘$) sin(~-i$) d6hence d~l . 1 - i ––
dQ/

on the profile con-

tour. Thus equation (17) &ives the complex vel”ocity func~
tion in the form

./
o

(20)
If IEI > lc0s(9-i$)\ , the series development for
~*(%) is
.--—————.———.—-..—.-————.———————____—_____——————_—..-.———..——————-———— -——— ._...-

2 If F(z) is a ‘regular function of a simple region G
Wounded at infinity and everywhere else outside of a“par,t-
ly smoo,th curve C, ant T(z) “is’s,t,eadyon’ C, every ,Z
of the outside zone of G follows Cauchyfs integral for-,
mula

F(z) “F([) d~= F(m) -I-~~i $ –-–– .
c z -T

See also reference 1, p. 68.
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‘[
...

Cn = 3:$ [sin(G+c-m) + sin(a-co )6]cosn-1(6-i W)
“
o

(
1

(20a)
,, de} do

l-i–––
d(3/’

This integral can be computed for the coefficient Cl and

leads to a known formula. It is with e-tc=cp

pi-r “’

~1= iafi
-’2%

[
[sin(9+C-a) + sin(a-~o)] (’+ %) ‘e =,’

0 al-r

‘1
>

ial’i. ~%– ~ [sin(cp-a) + sin(a- ~)] dq=ia~ sin(a- 6.)
“..

o

Regarding the result (20), it should “oe noted that
this formula naturqlly is not the only possible explicit
presentation of the velocity function, since Cauchyls in-
tegral formula can also be applied to every regular func-
tion in the outside zone of the profile c~mbfned with
;*(~).

3. APPROXIMATE THEORY Ol? POTENTIAL FLOW

OF THIN WING SECTIONS

There is a theory for thin wing sections which, pro-
ceeding from the image of a nonuniformly covered flat vor-
tex layer, esta-Dlishes an approximate relation between the
velocity differences on the upper and lower surfaces of
the wing section and the slope of its mean line (reference

5). It constituted f’or a long time the only one affording
a functional relation between velocity distribution along
the wing section and its contour, and prcved v,ery useful
despite its restricted range ‘of,validity’. Hence, the des-
ire to expand this theory to include m~dium fii~g,sections
inap~>roximate validity, ‘thou&’h”no satisfactory solution
has been found. Up tO now.. . .. ..
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The bdorsents theory, :described in the preceding sec-
t’ion,,affords ljhe-st:ri-~t~.re.l.a.t~.On,s.h,iphet~een the, w~ng-
section shape and the velocity distri’%uti~n along the con-
tour: It, more Over, aff~rds information about thin’ fiing
sections, and it might %e conjectured that for vanishing’
t’hickn”ess”the equations of thistheO”ry,with prbper’ omis-
sions”, wo’uld become the equations of the old theory of
thin airfoils, which would mean that Theodorsenrs theory.
represents the desired generalization of the old theory.

.However, that is not the case, as.is readily proved:
Theodersenfs theory contains a -theory’of thin wing see-.
tions as limiting case, the results of which are a system
Of equations different from tho~e’ of the theory. of the
lifting vortex” surface. ..

Ihe theory develcpeti hereinafter leads, for vanishing
airfoil thickness, to the formulas of the linear ,vortex.
theory and represents, in its formulas, if not in thought,
a generalization of the old thenry. In distinction fr”om
Theodorsents theory, it, is fundamentally an approximate
theory %ut it involves in return no infinite metho”d. Its
result is rigorous only in the s~ecific case of the flat
plate exposed at angle” a to th~ stream; but the more the
wing section departs from the flat plate - that is, the
greater its thickness and camber - the more the results
assume an ap.proximat,e,character.

‘i’hemethod, like that of Theo@o”rsen, begins with the
conformal transformation of plane E into a plane. z -
with the given airfoil _ by means of the function ~

where-oy the, wing-section contour becomes. a curve z(e) =

**( 6)+i Q
not much different from the unit circle. For

this alm~st ,circular contour, that flow with the complex

velokity w*(cn).= ~ e-is at infinity must he determined,
for which at point 2=1, I?hich corresponds to the trail-
ing’ edge, the” velocity assumes the value Zf3T0. ,,.

. .

But , while in Theodorsenls method the flow a%out the
almost circular curve is rigorously computed %y means o,f”
the analytical function - obtainable, to %e sure, nnl.y,$n
infinitely many steps - l~hich tra~sforms the COIItOUr.of
this curve smoothly into the ctirve of ttie unit ci,rcle,, the
solution of this flow is now effected approximately on
the basis of the following reasoning:

Illlllmmlll 111111=1Ilm II i ml
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At point P ‘on.:tha contour of’ the almost circular
curve the tangential ‘%locity has a certain ma fwitude

“u@). IIe’”n~etlii::ia$fal”velocity component in ~ is, for

small + ,, aPPrOYi~rna.tely.“”ut(6) $( fl)T,,wherely the radial

velocity in ou.twar,d&i.rection, and the tangential velocity
in direction of increasing 6 carry the positive sign
(fig. 3 ).’ ~~.“ ‘ ,.”,

,,
A%out the’ magnitude of the tangential velocitY in p,

the corre’sponding, flotv about the unit circle affords, for
the present, some information because, ~~hen’the almost
circular curve changes into the unit circle in which dis-
tance PQ and angle $ uniformly, tend to~~ard zero for
all 9 , the flow changes into that about the unit circle
and conve.rges.the tangential velocity ut(6) in P against

the tangential velocity uto(6 ) “at point’ Q of’ the unit
circle. ,.. . .. .

Then it is. a’.ssumed,that the distance PQ and t,he an-
gle 8 are so “small for all .0 that no difference need
be made between ut. (6) and ut(6) in the” intended ap-

proximate calculation. Hence the radial velocity in P is

approximated at “U*~ ~ and, while the change on transi-

tion from P to Q is ignored, this quantity substitutes
for the normal velocity Un(6) at point Q of the unit

circle. Accordingly , since the flow about the unit circle

(with velocity W e-is at infinity and with the rear stag-
nation point at point z = 1) is ut = - 2 N [sin(G-a) +

o
sin a], we have :

‘Un(e) = uto(6) a(6) = - 2 ~ [sin(G-:)’ +“Sin ~1 ~(~)
,.” (21)
In this fashion the problem approximately reduces

to the second limiting problem of the “@otential theory for
,. the uilit circle. Formulated for the complex velocity, the

problem con,sists of giving a regular analytical function
in the outside of the unit circle, which has the Value

?fe
-ia

at infinity, a zero point at z = 1, and ~hOse
normal component on the unit circle takes ‘the value pre-
scribe-d by equation ‘(,21’).Desired,’ a’b”oveall else,, is the
explicit expression for the tangeli~ial velocity on the
unit circle. ..

.:’
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In any flow” at point z = eiG

k

of the unit circle, the
follo,;ing ~q”~”atfo”n-’$”:--”” ~~ ,, ~~----: ., ..”::,-....’..._ . .,

‘n = Ux cos~+uy sine, ut=-~sine+. uy cos6

exist betw”een the normal component ‘n(G), ,the tangential

component Ut(e), and the components UX(G) and uy(0)

of the velocity in x and y direction.,.

Combining Ux and Uy info the complex velocity

function
.

u*(z) = Ux - i uy affords. for z = exe

[izu* (z)] z=ei6 =.ei~(i ~+uy)=(cos 6 +i sin G)(i ux+uy) =

=-ux sin E,+u~ cos6+i(ux cos6+uy sin 8) ut(~)+i un(6)

The result is adistrihution of the tangential veloc-
ity ever the ,circle periphery feasi”ole for a potential
flow with the aid of “Poisson!s integral as real part to the
imaginary part Un(e), acco>ding to equation (21). This
function

Pi-r 2R

/

>
1- ~;. un(6’) cot ‘6—’–;–L–d.G1 = ~ r [sin(6 }-a) +

.
.0 0

is, however, not the desired result because, since the re-
lated analytical function i z u*(z) at infinity is reg-
ular , u*(m) = o is contrary to the posed pro%lem for the
related flow.

To obtain the desired flow, the most general poten-
tial flow for which the normal velocity on the circle
periphery disappears and the velocity at infinity has the
correct value, must be superposed. This is the flow about
the unit circle with the tangential velocity

uto(6 )=- 2W [sin(6-a,) + sin P]

Hence
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277

./

“a
_. ._

Ut(ti) = - 2W
‘{

sin (6-a) + sin B - 7$;, [sin(~ t-a) -1-

0

+ sin a] a(e!) cot 41–2=5 d6
.}

Lastly, the availa%le parameter p mu”st be so deter-
mined tb.at the velocity disappears for (3= O (Kutta-

Joukowski theory). For B the equation reads:

2Tr

sin B = sin a + —Z—
2Tr.[

[sin(6’ -a) + sin a]~ (et) cot Q; de’

o

which finally gives the sought-for tangential velocity as

u~(6)’=-2T
{
sin(6-a) + sin.a + .

2.-rr

~
‘Z-r, .[

[sin(e’-a) + sin CL] a(el )

1

(22)
,.

0

sin(e’-=a )+sina= sine’
(
cos a + sin a tan ~2~

)

~ ~os Q:
sin “6 2

~ ‘
—- Sin 61 ————————————.—————.—— =—

2 Cos : sin 6t el-~
sin ——2——

—-— sin 8_.—-=..
e

Cos —
2

‘eI
_-

2————_—___

sin ‘~-~-g

Cos
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,..

‘~nd consequently.
,,,,, -.,

“:t(e) =’A
‘[’

.,,,, .
2W .sin e “’””’’”’”““’”““’ ““”

e >.. ....... .,,:
co9a+sina, tan--

2

21V , . :. ,,,>
1 /( )

Cos -QJ* --------
6

1

coscv+sina tan ~2. d(lj)t –-––––2–– d6 r
2vr Cos - t sin ~1-~

20 2
,.

,..,.

(22a)

This equation presents the velocity distri%ut”ion on
the almost circular contour in plane, z; from it the dis-
tribution over the airfoil contour is obtained by trans-
formation of the z plane into the original plane with the

t aid 01 the function Z = ~
(z+ :). e$+ze ~

The enlargement fac-

tor of this transformation for z = “ is

:3
~=e~+ie = I:; (z‘+)lz=e@.j.*=1‘-’’’-ie‘in(’-iv)l=

=e -v ~sin= 5 -1-sinhz V

and the a“osolute velocitv on the airfoil contour with m=
2W (absolute v@ocity ai infinity) is:

1

e$ sin 6

.[

ecos a + sin a tan - -
~sin’ e + sinh’$ , 2

al-r

Y(

> Cos SJfjr)o(~,) sin Q:ZQ“ ——_&—__ cosa+sinfu tan—–j -––––-2–- d6
2’rTCos :: 2/

2 1

(23)

In’ order to estallish a relationship %etween this re-
sult and the linear vortex theory, the equation needs fur-
ther conversion. TO this end, the periodic function

f(e) =
( )

: $(0)cos a + sin a tan -
.

below the integral is divided in a component fl (e) symmet-
rical to ~ = n, whose Fourier series consists of Cos

m -mmumm-um.m m-
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terms, and an unsymmetrical component f2 (~) whose Four.

ier series consists of sine terms only. If $1(6) and

32(6) are the ~ktis-~eclared compofients Of function $(g),

that is, if

791(,6)=* [a(”e)+$(2Tye)], T92(6)=* [a(e)-$(zm-e)] (24)

f2 (6) = ~ [f(~)-f(2n-8)] = cos a $2(6)+sin a tan ~ ~1(6)

Owing to the symmetrical qualities’ of the functions
fl(6) and f2(G), the integral in equation (23) can le
substantially simplified. It isz

_______— -——..—.—..——.————————————--.--————————-———————-———————-- ——————
3Auxiliary conversion formulas are:

x-l-y x-y

[

.
x 1 .1

)

sin —--— - sin _——
x 2 2

Cos — ——————— . ,—————— = Cos — ———-———–—————–—–—
2 x-y X+y 2 x~y X+y

sin —–.— sin ——
2. .2 sin —~— sin —~—

2 co;’; sin # 2 COS2 ~

$ ;;;–;–:–;%-: == Cos = ——–——————————–––––—‘ - ~ sin
2 - * (Cos y - Cos y)

2 sin ~ 1 + Cos x=- _——————.———————
2 Cos x - Cos y

x-y‘+Y + sin –~– .-

( l+.l )
sin —__—

x x 2
Cos — ——————- = Cos - ——-————–—--–—————=

2 x-y “ x+ y 2 x-y x-1-y

“’sin –2- sin ———2
sin ——- sin —~—2

2 sin ~ cos :
x 2

y 2 sin ~ cos ~

= Cos — —-——.—--—————————————————= . 2 Cos _ ———————..——————— =
2 - ~ (Cos x - Cos y)

2 Cos x - Cos y

Y sin x
= - 2 Cos — —————————————

2 COG x - Cos y
,.,., ,.
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I

I

l-r

[(
&! “.. ~os El

Cos ——
f~(b’)

.2 2
= ———————— — . —.—————— —

)

d.~1 =
~1-~ ~in~l+~

:. sin ——..—— —————-
0 2 2

‘l-r

o
~ and likewise

(3

/’
co s -=

-1- f~ (‘2m:~) ––––––___?______ (j.(2-IT-;) =
Singll -c-c“.. ————————-

IT 2

o

1111I1111m Immmm I ml IImI
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J“Fu(x) =IV e$u(x)’ 32-‘2 “2——————————
Co,h jJu-X

+-1

—.

/)
-.———

( l-x
cosa-sins –——

l-l-x

.

(26)

This general re&ult contains several specially note-

worthy cases.

Flat plate.- In the case of flat plate, it i.—x..———_
40(X)1E !U(x). =. o,, .an’dalso. JO(x) E $U(x] s o, as a re-

sult of which equation (26) reducesto

,,..

in accord. w,ith the previously derived equation (10) for
the absolute velocity on the plate surface. This is the

only case where equations (26) give the rigorous ‘result.

2 symmetrical airfoil.- For this, it is We(x) =—A—— ————...———————-——————

$*(X) and $O(x) = - $U(x); hence $l(X) z o, a2(x) =

$O(x). In this case the velocity distribution is, accord-

ing to equation (26):
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r ———--—-—
~(x)l =W ewoix) 1 - X2——+-—_——. (cosct * sins

... . .,: ‘c,o:sh2~o_-x2,_. :.. ..—, .‘. ..;:...,,..,“,.;

27e89.

{)
——.

l-x—--
l-l-x. .,,

.....

(27)

This equation is fundamentally an approximate equa-
tion. First of al~, ,n,ogood agreemen~, can ,be expected for
the trailing-edge ~,icinity - that is’,’””for x values ap-
proaching +1, if. the edge angle is “fi~ite. In fact, for
$.(l) +0, the principal value of in,~egra~

+1 .,.

r

~o(g)d~—————— _
f -x

:1.“
increases “oe~ond all limits if x— i.

The explanation “for this is as follows: With finite
angle at the trailing edge, the tangential velocity u~(e)

approaches zero differently for small Cl than it does at
the circle. Hence it is not justifiable to solve the nor-
mal velocity .A,ccordi~g to equation (21) on the “oasis of
the velocity distribution over the circle. And on this
point, equation (27) must also fail.

For practical purposes, it is recommended to figure
either with ‘~ sharp trailing edge or, what ‘amounts to the
same , rou.nd’’o.ff.:”the,trailing’ edge and Ioctit@ “point z = 1
midway betweeh p“ea~ and center Of peak curvature:” In the

,.,

second case, “t~e’~irst factor of equation (2’7), and with
it the velocityl approaches zero for e = .0”. ““

3 Infinitely thin airfo~~.- For infinitely thin air-—s__________
foils, it is $O(x) = - VU(x), and $O(x) = T9u(x); hence
al(x) = do(x), a~(x)~ (), Since, in this case, the fun6-
tion $O(x) disappears for x = + 1 and x = - 1, to(x)

may be approximated a’t vo(x ) S O if the camber is slight,

while function go(x) s :*(X) can, in this case, be ex-

pressed with ~o(x) =-v ~~ = - y!, ‘b&cause the airfoil

follows completely in proximity of the piece of the X axis
%etween -1 and +1. Accordingly, equation (26) gives:

.. !. !,
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The chief result’of the linear vortex theory is a re-
lationship between the velocity differences on the top
and bottom of’an infinitely thin airfoil and the slope
Y’(f) of its median line. Equatton (28) gives for this
relation the formula

+1

which for a=O reduces to

,.
and represents the known result of the linear vortex the-
oiy (reference 5*I. The approximate theory develoyed here
for medium thick airfoils contains the”old linear vortex
theory as special case and, in that reSP”ect~ re~resents ‘ts
generalization.

5. CONTRIBUTIONS TO ~GENERAL POTENTIAL THEORY

OF WING SECTIONS

,.

The potential flow about an airfoil is completely de-
scribed. by the related complex velocity function, as ex-
emplified in equations (4), (9 ); and”.(2.0), which give the
velocity function flows about the unit.,.circle, the flat
plate , and about any other airfoil’.’” The’ velocity function
is an analytical funct ion,, regular a? any point ,in the OUt -
side zone of the’ a.irfoi.l! For the v’idini~y of the infi -
--. _---. -_-_. _____LL__. _-. A-_------L ~--.-L------------- L----
*Fuchs -Hopf, Aerodynamic, Bd. 2, S. 8’7~
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nitely remote point the series development (2a) is appli- ..
--.,,ca~ye.,; !l!he coeff$.cien~s -of ~hih -series..are..associteded
With the force and moment applied’by the flow on the body
(equation 3).

In the following, these arguments a%out the complex
velocity are substant$,ally complemented, wherein relation-
ship i’s established %et~een fun~t~ori “and velocity distri-.
bution on the airfoil contour and with the direction of
the airfoil contour, This reasoning ,leads first to devel-
oping new integral equations for the basic problem of air-
foil ‘theory, which connect the velocity distribution along
the airfoil cantour with the direction of the airfoil con-
tour at every point in exact manner; and secondly, it in-
dicates a method for developing airfoils with required
characteristics. ..

Assume that the airfoil is plot,ted in the complex ~
plane. If the flow strikes the airfoil at an angle a,
then let w*(a; ~) %e the complex velocity. This function
is regular in the outer region of the wing. For t~~,
it is:

The residuum of lV*(a;~) is purely imaginary. Por the
values of w*(a:g) along the airfoil contour, the for-
mula

w*(a;~(s)) =4W*(CL;S) = [w(~;S)l e-ia(~;S)
(30)

is valid, whereby s is the arc length on the contour
measured from the trailing edge in positive direction of s
rotation l~(a;s)l indicates the a%solute velocity at
point s, and O(a;s) is the angle formed by the veloci-
ty and the positive real axis (fig. 4).

Further, let ~(z) represent the analytical function
which transforms the conto-ur of the airfoil in the ~
plane into the contour of the unit circle in the z
The function

plane .
t (z) “ is regular for all finite ,.z tvith

121 >1. In the foregoing, “~(z) had been standardized

‘~ should be real,by the requirement that lim – the im~
z~~ dz

age point of the airfoil trailing edge being a wholly. ar-
bitrary point of the unit circle. In distinction from it.
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a subsequent rotation w“ith the angle’. P..is. to %rfng the,
image point of the trailing.e.dge to point z = 1. Accord-

ingly, it is at infinity
.-

(ii = ae-ip ~~
z13m d’ .

For great z the series development

Then the substitution ~(z) in w*(a; L) gives an
analytical function

W*(CL;Z) = w*(cL:~(z)) (32)

which is regular outside of the unit. circle and assumes
.

for z = ezq, according to equation (30), the values:

[~*(~; z)]z=ei,Cp = lw(~;s(q))l e-i$(a,;s(cp)) =

= Ifi(a;V)l e-i3(~’; T) (30a)

This function serves as basis for the subsequent investi-
gations. The series ‘development of %*(m;z) for great

z is intended for later on. Because of equatien (31) and
of the development

(%+;+””’ co=we-ia’c’

ii?
W*(CL;C) = ~r) + = 5; )

valid for ‘fi*(a;~-), the first terms of this series are:
,’

~*(a;z) = W e a~P + (’C,-~Pla e-i~) $~~ -1-”... (32a)-ia +“C1 ~––
\

The %ehavior of the function if*.(a:z) at the point

z =-t-l, resembling the trailing edge, is of special in-

terest. If co is.t.he point of the trailing edge in

plane ‘~ and Y the edge,angle , we find: ‘

21-r-’y———- . . . T;?y
(C - Lo). - (~ -,l). n”,,’””o’r, (z.’- i) - (~ - co)
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for the vicinity of poi~t ‘ z“= 1.

,.—. Since in the flow shout the circl_e with, stagnation
point at z = 1, the complex velocity. acts like

-(z ..=~,

the flow about the airfoil
Y

..,.
w*(cz; ~) - (z - 1) if -- (1:; co)2*-Y‘

For the function ~*(a:z)
~(z), it is:

resulting from substituting
.

-~=-i~+f? -J :;*(a:.Z)”

Hence the following res,ult: If “the “airfoil has at the
trailing edge: the “angle Y, then

v“ .,

ii*(cL;q) = Co.nst,, (z - 1)l-r (33)
-.

for the vicinity of z = 1. ,.$

The relatinn of conformal function ~(z) with
w.*’(a;[) ~and ti*(a;z) has some surprising consequences .
The function L(z) ties the complex velocity of flnw a%out
the arbitrary airfoil to the veloci~y function of the flow
about th& unit circle. If ~1 e-is is the velocity at.
infinity for the flow about the unit circle, and z = ez~l,
the forward stagnation peint, the complex velocity, since
the rear stagnati~,,n point must lie in the image point of
the trailing edge,, i.e., at z = -I- 1 is., according to
equation (4) ,’ . ,.

,’ .,,.

where , according to equation (6)

(34)

From this it follows that the forward stagnation point
of the flow about the unit circle is coincident with the
zero point w*(m;z) %elonging to the forward stagnation
poeint”of the airfoil. flow. Herewith .Cpl ,and, since ‘WI =
n+ 2a:, at itself is determined. For the infinitely
remote point equation (34) gives:

. . .! .,, . . .“
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“$a e-= = T! e-is’ TF-l eia ““

hence ~r’
.. a? =--$”

w
@ =ar-~ (35)

The c@nformal function t(;~,i;tself follows from
equation (34) by integration.

1

icpwhich gives for z = e the profile contour !(p) re-

lated to a predetermined function F*(a;z)i From the fact
that the airfoil contour is a closed curve, it follows
that the residuum of the integrand in equation (36) must
%e equal to zero. The function w*(a;z) therefore, has
the important characteristic

For the coordination of the circle p~riphery and the
airfoil contour there exists, according to equation (34),
the fdllowing relationship:

as = p~t I sin(cp - ~1) +.sin a!
—--————————.__——.——

ZF Iw(a;ql)l ““ I (38)

This equation is recommended for solving S(cp) when the
distri’oution of the absolute values of, F*(a;z), that is,
the function 1= (U;cp)l on the unit circIe is known. at
must le so chosen that l~(a;n+2af)/ = O. Then the func-
tien ‘Ifi(a;$i)l qan be replottedwith S(9) and the ve-
locity distribution I-w(a;s)l on the profile contour ob-
tained.

Conversely, for given velocity distribution /w(a: s)/
“equation (38) give’s, inasmuch as point S1 of the forward
stagnation pbint 01’Ithe profile contour corresponds with
point Cpl = ‘l-r+ 2af
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wherein the constants ~~; and “WI are left for determi-
nation. This, is achie,.~e~.’,by’” th& fact tha,t s = O
to Cp

relates ●

=Oands=Sto~= 2VV, where S is the “air-
foil contour, The, solution for at,. and If? is:

,.. ,,,

%

!-/
)

IW(CL;S) I ds
l.+ ,@+ a’) ‘an a’

o——— —____ ——.—_ _,= -.——-————.—-——---.——_—— =
s ,. P(a’)

.[

,,,.

IW(CL;’S)I ds 1. - $-b tari”ui
‘1

“s

,/

>1

IW(CL; S)[ ds
,,

~t’= o—— —____ _____________________ ._

(
4 [Cos cl! + ;“ + at ) sin at

L / 1

‘ (39r.)

IJJ(a’) occurring in the first equation in-The function
l-rcreases between at = - -
2 ai~d al = -I-~

2
monotonically

from o to m. Hence there is one, and only one at for
each value of the quotient between these limits. Then the
second equation gives the value W; for at. Equation
(39) gives with these values at and WI the function
s(q), with. the aid of which the function
be obtained from IF(WS)I.

Ifi(a;q)l can

Hence the remarkable fact that for the conformal trans-
formation between the contours of an arbitrary airfoil and
the unit circle, the coordination of the boundaries tail be
determined without knowing the shape of the profile if the
velocity distribution along the profile contour for an ar-
bitrary potential flow about the yrofile is’known.

Lastly, the distribution IW(5;S) I for’any other an-
gle can be deduced according to equation (38), equally
without knowing the profile, from the velocity distribu-
tion [w(a;s)l for a certain angle of attack a. Since
the same function s(q) relates to both flows shout the
same profile, it is with ~ = ~(s)
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sin (cp-a‘~ti-l-a) + sin (a ‘+Ti-cr)
Iw(ti; s)l = p(a;s)l —.-—. ——.-— ————- ——————— ——————

I
(40)

si,n(cp-ti’)+ sin at ~

In particular, it give”s for ~ = a-a’=- P the veloc-
ity distribution for the circulation free flow

‘iv(s) = Tv(cx;s)
sin ~——.— ————.—— ——.—

sin(cp-a’) + sin at I
(40a )

Thus the” velocity distribution along the profile con-
tour related to a certain potential flow about the profile
determines the velocity d$strj.hution for other.angles of
attack as well, and can be, obtained by elementary calcula-
tion.’ And the fact that the related profile itself can be
defined in simple manner without having recourse to an in-=
finite method is one of the ensuing results.

Following these more &eneral arguments about the ve-
locity function and the velocity distributions on profile
contour and circle periphery, the relationship with func-
tion 4(s) and ‘3(cp) decisive for the shape of the con-
tour, is discussed. Reverting ‘oack to equation (30a), we
replace cp by S, so that it now reads:

(30a)

What are the connections ‘oetween the functions ]F(a;q)~
and ~(u;cp)?

With the complex function ‘F*(cl;z) new complex funct-

ions f(z) = f(z,R*(cl;z)) can be formed which are regu-
lar in the outside zone of the unit circle with inclusion
of the infinitely “remote point, and on the circle contour-
With”

““f(z,w*(a;z)) = g(v,q) + i h(v,v)

the two.interrelated equations exist betmeen real and im-
aginary parts of f(z) on the rm.it circle

. .

‘1
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,, 2n”””.“.’.

r’
,.’.

,</, .,. –. . . . .. . ,. ‘, . . . . ‘.. ,,

g(l,q) = g:(-).:- & ‘“h(’l;”& l’)”COt ‘g:-~–~ dq’
.’;.,
0 .’

,,
,,’, m“’’’’’””” ‘“

/ ““,
a

h(l, cp) = h(co) + ~+ g(~, q)i) COt ~~:–~ dcpt
..,.,,.,,
“o ‘“ ‘“

at the same time . g(l..,~)-and h(l, p,) are functions of
rp,ti(a;cp) and ~(a;q), accoriin”g to” equation” (30a). The
result therefore is a diversity of integral equations, all
of which establish the relationship between the functions
l~(a;cp)l and ~(a; cp) in exact manner. A few illustra-
tions Zre given:

1. The function F*(a;z) has itself the characteris-
tics required of f(z). The next example therefore is
f(z) a w*(a;z). In this case

g(l,cp) = Itil (30s 3 g(cm) = w Cos CL

and
h(l,cp) = - Ifil sin’~ 9 h(~..)= - W sin a

Hence the identities

limp){ Cos T(q)) = w Cos a +

211

l~(q)j Sii T(cp) = W sin a“’-

2’n

: 0
,,,:. .:

Every such equation can fundamentally “oe used to de-
termine the other function for given l=(q)] or ~(cp),
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and it should be ‘possible in various ways to give infinite
iteration methods which lead to r.esuits; and” might even
be advantageous for the application. This finding like-

wise explains the surprising fact incident to the compar-
ison of the two theories (3 and. 4) that different assump-
tions may lead.”to substantially unlike profile theories
which in limiting cases, as of the infinitely thin air-
foil, give outwardly entirely different equations.

2. A very interesting example is the following case:

(
f(z) = : .2 - +“) (F*(a:z) -fi*(~)

Here [f(z) ]z=ei~ = i sin q)(fie-:~ - W.e-ia) =

+ i.(~~1 cos 3 sin cp -=.W cos a sin Co)
.

and, on account of equation 32a) with Cl = ~~

~p
_ iI’e $; (-——.—..——.=—

4na
sin D + i cos 13)

Hence the two identities read:

0

=rc0s6_—— ——— -Wsinmcos Cp+
4na

o
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The value of the constant ~-G~&~ follows f~om the
4na

Kutta-JoukO&’ski c’~ndit”~on th”a”~‘.a~the trail-~ng-edge--. that
is, for CQ=O,”

‘he ‘e=OciJ$
must be finite. It is

la

M23_J2. = TV sin CL-.~lX
4na /l

=($$) sin ~(@’) sin C@ cot ~~ dT1
.
0

henee the integral equation: ,.

ii(cf)l Cos T(q) = w (cos a + sin a tan &

2-it

,1

(41]

I

>
+ –__L____

27T
l~(q’)lsini(cpf)sin~’ cot~:c~- cot~~dcpt(uin 9 . ● 2 20

‘o’ i
J

‘This exact equatifln is intimately related to the the-
ory of the lifting vortex surface. For t~le replacement of
IF(CP)I below the integral by the velocity distribution of’
the flat plate, according to equation (10) in first approx-
imation, leads to an equation which (substituting 8 for
v, and $ for ~) agrees with equation (23) for the case
$=0. Thus the result is again among others, the result of
the theory of the lifting vortex surface - this time, how-
ever, not as limiting case of a somem’nat more generalized
approximate theory as in (4), “out as first approximation
of an exact equation for the most general flow about any
arbitrary profile.

8. The equations obtained, according to the described
principle are, as a rule, integral equations possessing,
as in the two examples, ~o,,e:::~)lcombinations of functions
and ~(cp) below and outside of the integral.
these functions can be separated by so choosing the fu~c-
tion f(z) that its real part depends upon Iti(cp)l, and
its imaginary part on $(~) only.

If the airfoil has the trailing-edge angle Y, and
the forward stagnation point of the f’low lies at eiwl ,
then,according to equation (33),

is a regular function ITith the characteristic required for
all jZI~ 1.

11 —



38 N,A. C.A. Technical Memorandum No. 886

N9w in general

r( i.?i
in 1 - %-

)1
= In

(
2 sin ~–~~– -I-i

11 - (-Q-A)_——— — ———

L
2 )=ei~

for A Scp< 2Tr+ ~, while for CP<A and for Cpzzn+h

the two functions for real and imaginary part must be con-
tinued with the period 2m. Hence (for A=o and A =

VI)

[“G-*)]z=eiCp=ln (2 ‘in Q+i ‘~~ for O SCp <217

and

[( icp~

)] “(
z *in lyl_:_~l

in 1 - ‘–--– .. = in . –2
L ‘\ z=elv -) ‘ i (:3=X; ~)

In this case it gives for f(z) =g+ih

g(l, v) = In –__–_____l F(Q)l———A—————.———————, g(w)=ln W
3!

IT ,-c~t
@. sin ~)n(2 sin ---2—)

h~na.e Poisson!s integral ”leads to
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~(b) Yn,-cp cpl.-.cp*,?T ,=’” CL “- - —-— - ———
,.m>...2. .,. ..,2 h .. .:..>, ., . ...-.....,. .. .. .,, .2. ... . . . . . .

,,. ‘

The advantage of using the function in R*(a; z) as,’
%asis had already been recognized by F, I’feinig,who like-

,,
wise cited equations (43) and (44). ~

h,,*

‘1
The discussion of.the genbral airfoil theories is con-

,$ eluded with Weinigts In ? method, involving the question

.,1
Of profiles of prescribed characteristics, of profiles re-
lating to a given velocity &istribution, and the potential

~ flow about a given profile.
.

q
,,

$ 5. THE WEINIG in % METHOD3

, In preparation of the treatment of profiles with pre-
determined characteristics, the appearance of the most iin-
portant profile characteristics with the function ti*(a;z)

,‘: is first ascertained. For this purpose equation (42) is
,; used to formulate w*(a:z) with F(z) ~ f(z) - f(~);
$’
i
i!

[, ?i*(a;z) = T’e-ia (1- +(’-+) ‘F(z).. ,., with 1 (45 )

4

The parameter y in the formula is, according to equa-
tion (33) the trailing-edge angle of “the airfoil. The fact
that the contour is closed affords some prediction concern-
ing the coefficient cl. If it relate’s to an airfoil with
-——_____________ _ _________ ______________ ____

3The connections between the velocity distributionsat dif-
ferent angles of a,ttack and the in w method has been re-
ported “oy F. Wein.ig in the following publications: Z.f.a.M.Ma,
9 (1929), p. 507; Werft Reed. Hafen la (1933), p. 131; Luftf.-
Forschg, 12 (1935), p. 221.

,.
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fixed center of pressure, a second condition for ca must

be added. The condition for” c1 follows from equation
(37). It is

[

1:“— “1-::Q
eia

()

n=l zn eia
=!—— -- residuum 1’-$ e = ——-

(
-.l+:.-C1

)
=0

w w

hence the final condition

IIl=o (46)

The condition of’fixed center of pressure follows
from the fact that an airfoil has afixed center of pres-
sure when the mement fcr zero lift is zero. In this case

the aerodynamic center of V. ~~isest lift Para301a is zero>
and the air force therefore passes through the aerodynamic
center of the airfoil at every angle of attack (reference
~), This neans, according to equation (3), that ly series
development for fi*(a;~) in the case of Cl = O for

Ca = A2 + i B2, the relation .,

AOB2 -I-BoAa = O

must ‘De fulfilled.

According to equation (32a) the disappearance of c1

is accompanied by that of t~,e first coefficient” z~ of

the serie~ development for )6*(m;z , and the second coeff-
icient Ca is, in this case, connected to C2 by

,.

C2 = a2e-2ip Z2

But , according to equation (45)
eincpl

)
1“

lnfi*(a; z)..=lnW-i a+
n~l(cn-;- n ~n

—“———— ——
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That is,
.., .,....,,

51
( )

=“W e-is’ ‘“ i“”~’’-’”’’eiql~Cj - W “e-ia”(i + eiql)
,;

41

therefore ~1’ = O: if cpz =IT; that is, if a = - 13. This
is the condition for lift-free. flow ab,out the wine sec-

cL=- $, we have :

W ei~ (aa + i ba
Y=

-G -b )

-4

The condition for fixed center of pressure is AoBa -I-BOA= =
o, which means that the imaginary part of COC2 must dis-
appear. But , since aJ=- P, the constant” is Co = W ei~

COC2 ( “i
= a2’W2 a2 -1- i bz - — d+

21-f )

so that the condition for ~.irfoils vith fixed center of
pressure reads

-b~=o (47)

The closing condition and the condition of fixed
center of pressure are also predictions about the func-
tions R(a;q) and ~(a;cp). The particular formulas can
be readily obtained on the identity:

[In ~*tL’;Z)12=ei@ y. in IR(ct:cp)l - i 3( CL;:q?)’”=

=ln’W -i a+
(

E cn_I:s:3
)
e-incp.

n=l nn n

by division into real and imaginary parts and integration.

(48a )

o
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2Tr

0 2Tr

[1.’i
.,

in ;(a;~) sin 2cP dq = --~ sin 2cpl
.
o’

and for function 3(a;cp)

2??
n

/
T(LZ;9) dq’= 2Tral,..

(closing (46e,)
condition)

(fixed cen-
ter of (47a)
pressure)

0 2Ti

/’ ‘n(l+cos ~1)
,/ Za:v) sincpdCp=- 1
0

2Tr

J

(closing (46b)

/

condition)

“~(a:q) ~o~ ~ dp = + n sin T1
.

0 2Tr

[

(fixed cen-
(47’b)~(a;cp) cos 2CP dq = +.; ;in 2cP1 ter of

“.. pressure )
o

The general theory preseilted here is superior to the
old method, particularly iil the manner of developin,s math-
ematical profiles. The calculation needs no special con-
formalfunctions with a number of correctly chosen paramet-
ers as basis, ‘but r.athe.rproceeds from the general. fUnC--

tion ti*(a;z) which is connected with the airfoil charac-
teristics. ~n the described manner.

Either the coefficients Cn in equation (45) Can be,. Y
prescri”oed, noting that c1 must always : - 1 + ;, rmd

that ?)2 = O for fixed center of pressure; or else, the

function Ifi(a;v)l cqn be given for a
tc.ck a,

certain angle of at--
from which the velocity distri%utio.w, along the
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Profile contour (and hence the flo~ characteristics, of the
_-. . airfoil inquesti,on) canbe deduced,

(38) and (40).
according to equations

By the selection of,, liww)l it should
he O%served that equations (46a) are complied’with. and, if

,, a fixed centor”of pressure is involv,ed, equation (47a).
. For CP = O, Iti(a;cp)l must,, like cpy/n, become zero if

the airfoil is to have the trailing-edge angle y.

,, With this chosen function I;(ct;q)l

I;(a,; cp)l
in ———— _________________ _

~

( )(

m
2 sin ~ z sin I-WI-91———..-—

2 )

~ must be formulated and developed in Fourier series. If
1 this development reads

In Iimz;qdl ————_——
‘Y

=ln W+
-

211

L
2

1
= 2-G ,,, in tv(a;cp)dcp -

(1 -:) co’ v +
o

+ E (an cos’n Cp + bn sin n c?)
n=2

the related function T(a; cp) is,
(44) :

according to equation

a.

-1- ; (ansinn cp-hncosnc~)’
n =2

and the ~ro file contour itself, LICCOrdiilg to equation (36),

d- —— m — ,..., . . .
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z

1

with z = ei~. Hereby, a;cordin~ to equation ‘(4),

z CP

/“
>~i~ /z = ● .. dz =9

. . ;./:.. i ‘iqaw’
1 Q

= pi ~! ~-iv (sin (T-a’) + sin d’)

and consequently, o

C(W)=Co-2a~ ./
sin(cp-al) + sin at ei~(~;~) d~———————.—-.——.————————— (36a)

iti(a..;q)l
o’

The separation of real and imaginarY Parts gives for the
profile contour the ;oarameters

.y

5(q))=fo-2a w
I

sin(cp-’a!)+sin a:————————————— -.-——
Ii(a;v)l

Cos Z(a;cp) acp
.
0 ,? 1 (36b)

The co~stint a. is a scale factor for the profile. The se

inte~~-als can be graphically evaluated.

As regards” the question of profile for a“ given velocitj~

distribution iw(a; s)l along the yrofile contour, raised
previously, the following can now be stated. If it has

previously %een proved that Iw(a; s)l belcngs to a poten-

tial flow about a closed profile, then Iti(a;v)l can be

r.scertnined from equation (39)3 and the cited rnethOd gives
the profile contour. Hence the problem of determining the
profile for a certain velocity distri”outiOn is, as origi-
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nally discussed by We,inig, explicitly solvable and conse-
quently essentially simpler than the reversed problem.
-Nevertheles’s, “the”furict’io~ “lw(a;s)l ,.“is no svita%le start-
ing point for” prfifile calculations, - for the choice of
Iw(a;(p)l as the choice of Ir?(.a:s )1“ is” restricted ‘by the
final condition (46a). “These equations are, as follows bY
substitution of Q(s), a very ,complex .rp,quirement for
function Iw(a;s)l which is,no”t surnrnar$.,’lymet, and ‘would
involve a return to IR(cL;Q)I‘, which wotild bring us hack
to the previously described method.

Lastly, the problem of computing the velocity distri-
bution for a prescribed airfoil can be treated by the in ii
method. The deciding condition “is eqh~tion (43). But ,
since with given profile (and forward stagnation point) the
function *(CL;S) is exactly know”n, while 3(CL;Q) is not
known , the problem leads progressively to the executed ap-
proximation of the fu,nction 3(a;cp) which, ho,.vever, means
that the principal problem of the airfoil theory leads
here also to an infinite method.

The first formula. for T(a;cp) can be obtained %y the
folloring process:

Select the junction line “oetween trailing edge and
airfoil nose as profile axis. Draw a straight line from
point P(s) on the contour to this line. If the base
point PI has the coordinate X, and t is the profile
chord, put

x(s)————cp(s) = arc cos t/2

o.nd co~rdinate the upper surface of the profile to the in-
terval 0 < q< ?-r, and the lower surface to interv”al
n c 9< 2m ““(fig, 5“).

Now, t(a; s) is replotted on the bas’is of this approx-
imately valid coordination of s and cp; let, thereby, the
function ~(a;~)= originate. Since s(p) is not accurate-
ly known, this d(a;~) generally does not comply with the
final condition (4611), and therefore is not as yet practi-
cal for the calculation, according to oq~ation (43). F,or
this reason, a correction of the form ,A.$(a:v) ,= Aa sinq
- Al)=cos CP with the free constants Aa and Ab, is added
to ~(a;cp) in such a way that
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ZI’(a;cjr =‘%(&;cp)+ “A%:cp)

complies ~“(”ith“equation “(46b). With t~$,s 31 (cz;cp) a first

approximation Itil(a;cp)l of the velocity distribution is
then attempted by means of equation (43).

This correction in respect to (46%) results in the
suppression of the Cos term in the Fourier series for
=
ti(a;cp) + : & + Y&_:_?? ~ a

2 2
cind ‘the addition of the co-

efficient - ~+: to iho sine term. Then the series

,for the !i,ntegrand of (43) reads:

+ E (an sin nq - “On COS ncp)

n=2

and tb.e first approxim~. tion \W1 (a;v)l is, according to

equation (43):

(- 1-:) COSV+ E’ (an

)C13i-cp ~ \
cos ncp +lIn sin n V)

x (2 sin
n=a

—L.-...—.-
2

With this function Iiil(a;q)l the connection between

s and q can then be newly com.pute~, according to equa-
tion (38); and a new ap~~roxim::.tion $2(a; Cp) obtained from

$(a; s). The method can be continued at will. Its con-
vergence is not easiljr fol~G17e~ mathematically. But there
is good reason to surmise that results are quickly achieved,
and also confirmed by Weinifl.

Translation ‘Dy J. Vanier,
National Advisory Committee
for Aeronautics.
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